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Introduction
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● Edge Localized Modes (ELMs) is thought to be triggered by MHD
peeling-ballooning instability.

● MHD filaments may carry out heat to SOL without reconnections.
(Wilson and Cowley, 2004)

Transport by the filaments may not fully account for the ELM driven
transport. (Kirk et al., 2014)

● On the other hand, (Rhee et al., 2015) have proposed

a nonlinear generation mechanism of tearing-parity fluctuations in ballooning
driven simulations, implying a stochastic transport may take place.

● The nonlinear dynamics of ELMs is not fully understood.



Resonant Magnetic Perturbation
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● Resonant magnetic perturbations (RMPs) are widely studied for ELM
suppression and mitigation.

● The feasibility of ELM control by RMP is confirmed across several devices.

● Enhancement of turbulence has been observed when ELM is suppressed with
RMPs(Lee et al., 2016).

● To address the nonlinear effect of RMPs on ELM crash consistently, we require
flux driven ELM simulation of MHD, at least.

We study RMP effects on nonlinear evolution of fluctuations as extension of
Rhee et al. (2015) in strongly ballooning driven pressure collapse with RMPs,

● This may provide insight into nonlinear RMP effects.



Model
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Based on Hazeltine and Meiss (1992) with plasma response to vacuum field,
δBRMP = b̂0 ×∇ψRMP.

Vorticity :
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where η = 1/S = 10−9, ηH = 10−12, and Rechester-Rosenbluth DRR

U = ∇2
⊥ (φ+ p) , J = ∇2

⊥ ψ + J0 ,
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[
ψtot,

]
, ψtot = ψ + ψRMP

and ψtot = ψRMP at B.C.



Stochastization mechanism by nonlinear BM interactions
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Rhee et al. (2015) proposes that field-line stochastization can happen by the
mechanism

● Unstable n0 primary ballooning modes (PBM) generate 2n0 secondary
tearing-parity perturbations (STM) in-between the surfaces of their poloidal
components.

● STM interacts back with PBM , generating tearing-parity n0 perturbations
(PTM).
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Figure 3. Time evolution of (a) growth rates for PBM (black, triangle), PTM (red, diamond) and STM (blue, rectangle), and (b) island
width corresponding to STM (blue dashed–dotted) and PTM (red solid). The growth rates of PBM and STM at t = 40τA are γ τA = 0.370
and 0.185 respectively.

Figure 4. (a) Time evolution of the volume-integrated nonlinear energy transfer rate (Ŵm0,n0
) to the magnetic energy of STM (red) and PTM

(black). Ŵm0,n0
is defined in equation (1). The dotted line represents the normalized half-width of the magnetic island due to the STM. (b) A

schematic diagram illustrating the energy transfer process from the kinetic energy of PBM1 to the magnetic energy of PTM at the location of
PBM2 via STM.

Having identified the process leading to magnetic field

stochastization, we now consider collapse-induced energy

losses when stochastic magnetic fields are present. To this

end, we add a term representing heat conduction along the

stochastic field lines (Q||) in the pressure evolution equation,

∂P

∂t
+ [φ, P ] = Q||. (3)

To find an appropriate model for Q||, we first evaluate the ratio

of Lyapunov length (Lc) of a magnetic field to the collisional

mean free path (lmfp) using the parameters in the simulation,

giving rise to λ ≡ Lc/lmfp ≃ 0.01, where Lc is evaluated

numerically at t = 70. The whole stochastization process

takes place approximately within ∼ 30τA corresponding to

∼ 0.07 τei (τei: electron–ion collision time) in this simulation.

The above two conditions indicate that the stochastization

process and ensuing energy losses should be dealt as a

collisionless process.

An appropriate collisionless fluid model for Q|| in the

presence of stochastic field lines is not available at present.

From kinetic simulations, Park et al showed that the parallel

electron heat conduction obeys the Rechester–Rosenbluth

diffusion model [25] when one includes a factor accounting

for kinetic effects [26]. Motivated by [26], we employ the

collisionless Rechester–Rosenbluth model to evaluate Q||

Q|| = fKv2
e DRR

∂2〈P 〉

∂r2
, (4)

where 〈P 〉 is an equilibrium component of pressure and DRR =

πveR
∑

m,n(δBmn/BT)2δn,m/q with ve the electron thermal

speed and δBmn the perturbed radial magnetic field with the

mode number (m, n). fK is a factor introduced to account for

the reduction of thermal diffusion due to kinetic effects. The

precise value of fK is unknown. This will require a more

sophisticated kinetic modelling or a fluid closure which is

beyond the scope of this paper. In general, we expect fK < 1,

and [26] suggests fK ≃ 0.1. In this work, we use fK = 0.1 and

1 for a comparative study of the impact of fK on the parallel

energy loss. Main features presented in this paper, however,

do not change with this fK variation (except for the amount of

parallel energy losses). We expect the actual value of fK will

be within this range.
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Characteristics of this mechanism
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● STM is generated by the coherent interaction between BMs
=⇒ STM growth rate γ+

2
= 2γ−

0
is twice of PBM growth rate (γ−

0
)

● PTM grows rapidly after STM island width reaches the inter-surface distance.
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On the simulations
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● In the BOUT++ framework [Dudson et al. 2011]

● (nx, ny, nz) = (516, 64, 128) in the half torus.

● The toroidal mode number n = 2, 4, · · · , 60.

● Maximum linear growth rates at n ≃ 20, where α = 3.86 > αc = 2.8 with
s = 4.36.

● an initial Gaussian spectrum with the peak at n = 20.

Pressure profile, α=3.1
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● No sources/sinks

● No zonal flow(n = 0 potential) :
Jhang et al. (2016) on Zonal Flow

● No SOL/divertor physics and no
X-points

● S = 109 but J‖ smoothing and ηH

● ν‖ = χ‖ = 10−2 ∼ 10−3.



Implementation of Resonant Magnetic Perturbation
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● We calculated a plasma responses ψtot to vacuum n = 2 magnetic
perturbation from a set of 3× 4 coils in the BOUT++ .

● Apply the plasma responses ψRMP for n = 2 as constants in time.

● The toroidal components
n = 2 and 4 do not evolve in
time.

1 2 3 4 5
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Br(tot) t = 2000,lrmpc07k/

0.75 0.80 0.85 0.90 0.95 1.00
Sqrt(psi)

1•10-5

2•10-5

3•10-5

4•10-5

5•10-5

m=  5
m=  4
m=  3

vacuum



Total fluctuations increases with RMPs
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● Here, |φ|2
rms

is shown for different RMP strengths.

● The simulations go through pre-collapse (t<80) and collapse (t>80) phases.
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RMPs increase the fluctuation level in the whole simulation period.



The most unstable modes not affected by RMPs
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● Local curvature change due to RMPs (Bird and Hegna, 2014; Mou and Jhang,
2018) is missing, here.

Instantaneous growth rates
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● For higher n (i.e., n = 40), the early pre-collapse phase (t<60) shows
enhanced fluctuations as in the previous slide.

● In the later pre-collapse phase, 50 < t < 80, strong coherent interaction
(Rhee et al., 2015) is observed, γ ≃ 2γlin.



Enhanced fluctuation at low toroidal number n
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Instantaneous growth rates
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● For lower n (i.e., n = 10), more enhanced fluctuation level with RMPs is
observed throughout the simulations.

A hint of nonlinearly distinct evolution with overall enhancement of the
fluctuations with RMPs



Fast pressure collapse
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Before going into further analysis, let’s see what’s the impact of RMP enhanced
fluctuations? In the collapse phases,

PHat at t=120.000
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RMPs enhances the convective transport
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● Larger fluctuations with RMPs leads to larger convective energy flux.

Convective Flux at t=90.0000
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RMPs inhibit primary tearing modes? Yes, But. . .
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● The primary tearing n = 20 increases abruptly at around the island
overlapping, even though it is not well-timed as in the single-n simulations, due
to the multiplicity of the rational surfaces.
=⇒ In general, the multiple-n simulations follow the same mechanism but
complicatedly.
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● Mainly, the primary tearing-parity fluctuations are relatively suppressed.

Why is the n = 20 tearing parity fluctuation suppressed with RMP?



With RMPs, a lower toroidal number becomes dominant.
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● With RMPs, one more cycle takes places. This time with n = 10 (PBM and
PTM ) and n = 20 (STM ). =⇒ n = 10 tearing fluctuation feeds off n = 20
tearing fluctuation.

● Through the consecutive nonlinear generation of tearing parity fluctuation, the
island width is determined by a lower toroidal number than in the absence of
RMPs.
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● This can happen because n = 10 ballooning parity fluctuation is enhanced in
the presence of RMPs.



Larger tearing parity fluctuations in RMPs
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● With RMPs, magnetic islands for all rational surfaces have larger widths.

Island overlapping it=80
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Low rational surfaces are the last to be destroyed
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The rational surfaces of smaller m and n are the last to be overlapped, since the
distance to the neighboring surfaces is the longest.

Island Overlapping
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Enhanced and broader spectrum from the beginning
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● Right after the start of the simulation, the broad spectrum is quickly
established and stay for a few more Alfvén time, until the unstable modes find
their eigenstructures.

Spectral Evolution
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RMPs keep redistributing the energy
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● As the fluctuations increase with instability, RMPs smoothen the spectrum in a
way that they appear to transfer energy into higher and lower toroidal modes.

● Around n = 20, the fluctuation levels in the RMPs are similar to No RMPs.
=⇒ That’s where the linear growth rates are the largest.

Spectral Evolution
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With RMPs, more toroidal modes are nonlinearly correlated
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● The bispectral analysis indicates that

✦ In the pre-collapse phase, n = 20− 30 modes are strongly correlated along
with n = 40− 48 =⇒ Confirms the coherent interactions.

✦ With RMPs, more toroidal mode numbers n = 10− 30 are evenly
correlated
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RMPs induce broad spectrum formation in the pre-collapse.
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● Nonlinear energy transfer rate in Ohm’s law is defined as

Γ(ψ) =
〈

Jn
[
ψtot, φ

]∗

n

〉

=
〈

Jn

[

ψ̃, φ
]∗

n

〉

+
〈

Jn
[
ψRMP, φ

]∗

n

〉

● Energy flow from a toroidal number n (♦) to a toroidal number n′ (+)

Nonlinear transfer t=50.0000
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Nonlinear transfer t=70.0000
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● RMPs mediate energy transfer from n = 16 ∼ 18 to all other toroidal modes,
confirming the RMPs keep redistributing energy and increase the fluctuation levels.

● Later close to the collapse, the role of RMP becomes less significant.



Conclusion
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● We have studied the evolution of the ballooning driven fluctuations in the
pedestal collapse simulations with/without RMPs.

● It is found that

✦ Even in the multi-n simulations, the nonlinear generation of tearing parity
fluctuations by ballooning parity fluctuations can explain stochastization,
qualitatively.

✦ The presence of RMPs can increase the fluctuation level, especially at low
toroidal modes, and increases convective transport.

✦ RMP mediated nonlinear coupling of toroidal modes is a key mechanism
for broad and enhanced fluctuations.

● RMPs may play a similar role for turbulence responsible for pedestal transport.

● Future plans

✦ Dependence on dominant toroidal mode numbers

✦ Dependence on plasma responses (linear vs nonlinear, pitch vs.
kink-dominant)
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